Retrofit of a 600 MW Down-Fired Pulverized-Coal Furnace for Low NOx Emission

Author:

Liu Tao12,Wang Sheng12,Wei Ziming3,Yu Jie3

Affiliation:

1. State Key Laboratory of Low-Carbon Smart Coal-Fired Power Generation and Ultra-Clean Emission, Nanjing 210023, China

2. China Energy Science and Technology Research Institute Co., Ltd., Nanjing 210023, China

3. State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, China

Abstract

Aiming at solving the problem of high NOx emissions of a down-fired boiler, a new combustion system has been proposed by means of the numerical simulation using Ansys Fluent. The coal-lean stream (tertiary air), which was originally mixed with a separated overfired air (SOFA) stream on the front and rear walls of the upper furnace, was relocated to the lower zone of the furnace after retrofit. The secondary-air slots were transformed into a new annular port type, which was injected into the furnace with a down-tilt angle to increase the residence time of the coal stream. Furthermore, the effect of secondary air distribution and velocity of coal stream on performance was studied. After retrofitting the combustion system, the NO emissions were effectively controlled, decreasing from 906 mg Nm−3 to 576 mg Nm−3, but the carbon content of fly ash increased from 2.46% to 5.78%. Aiming at decreasing the carbon content of fly ash, the effect of coal/primary air velocity on the arch was studied. Less carbon content in fly ash can be observed for the lower arch airflow velocity. The results showed that the NO emissions can be controlled below 595 mg Nm−3, and the carbon content of fly ash was reduced to 3.39% when the velocity was decreased to 18 m s−1.

Funder

natinal Key R&D Program of China

State Key Laboratory of Low-Carbon Smart Coal-Fired Power Generation and Ultra-Clean Emission

China Energy Science and Technology Research Institute Co., Ltd.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3