Affiliation:
1. Graduate School of Refrigeration and Air-Conditioning Engineering, Pukyong National University, Busan 48513, Republic of Korea
2. Department of Refrigeration and Air-Conditioning Engineering, Pukyong National University, Busan 48513, Republic of Korea
3. Industry-University Cooperation Foundation, Pukyong National University, Busan 48513, Republic of Korea
Abstract
In this study, the heat transfer augmentation and friction factor of a novel type of solar air heater (SAH), which incorporates longitudinal fins and rectangular turbulators, were investigated numerically with different arrangements of the turbulators. The effects of arrangements of rectangular turbulators placed in a finned air channel on its heat transfer augmentation and friction factor are discussed for Reynolds numbers ranging from 3000 to 15,000 using commercial ANSYS 17.2 software. Four different arrangements are investigated, including Array A, which places turbulators on both the fin’s side and base surfaces at the same position; Array B, where turbulators are sequentially placed on the fin’s side and base surfaces; Array C, where turbulators are only placed on the side surface; and Array D, where turbulators are placed only on the base surface. Array A showed the highest heat transfer augmentation and friction factor among the investigated arrangements. However, the highest thermo-hydraulic performance (THP), considering both the heat transfer augmentation and friction factor, was obtained in Array B, with a value of 1.36. Consequently, Array B was regarded as the most appropriate and effective arrangement method for the finned air channel of a SAH.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献