Author:
Liu Wei,Xiao Yineng,Wang Xiaoming,Deng Fangming
Abstract
This paper presents a hydrogel-based flexible sensor array to detect plantar pressure distribution and recognize the gait patterns to assist those who suffer from gait disorders to rehabilitate better. The traditional pressure detection array is composed of rigid metal sensors, which have poor biocompatibility and expensive manufacturing costs. To solve the above problems, we have designed and fabricated a novel flexible sensor array based on AAM/NaCl (Acrylamide/Sodium chloride) hydrogel and PI (Polyimide) membrane. The proposed array exhibits excellent structural flexibility (209 KPa) and high sensitivity (12.3 mV·N−1), which allows it to be in full contact with the sole of the foot to collect pressure signals accurately. The Wavelet Transform-Random Forest (WT-RF) algorithm is introduced to recognize the gaits based on the plantar pressure signals. Wavelet transform realizes the signal filtering and normalization, and random forest is responsible for the classification of the processed signals. The classification accuracy of the WT-RF algorithm reaches 91.9%, which ensures the precise recognition of gaits.
Funder
Natural Science Foundation of China
Natural Science Foundation of Jiangxi Province
Key Research and Development Plan of Jiangxi Province
Science and Technology Project of Education Department of Jiangxi Province
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献