RESPOnSE—A Framework for Enforcing Risk-Aware Security Policies in Constrained Dynamic Environments

Author:

Michailidou ChristinaORCID,Gkioulos Vasileios,Shalaginov Andrii,Rizos AthanasiosORCID,Saracino AndreaORCID

Abstract

The enforcement of fine-grained access control policies in constrained dynamic networks can become a challenging task. The inherit constraints present in those networks, which result from the limitations of the edge devices in terms of power, computational capacity and storage, require an effective and efficient access control mechanism to be in place to provide suitable monitoring and control of actions and regulate the access over the resources. In this article, we present RESPOnSE, a framework for the specification and enforcement of security policies within such environments, where the computational burden is transferred to high-tier nodes, while low-tier nodes apply risk-aware policy enforcement. RESPOnSE builds on a combination of two widely used access control models, Attribute-Based Access Control and Role-Based Access Control, exploiting the benefits each one provides. Moreover, the proposed mechanism is founded on a compensatory multicriteria decision-making algorithm, based on the calculation of the Euclidean distance between the run-time values of the attributes present in the security policy and their ideal values, as those are specified within the established policy rules.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference68 articles.

1. Management of Networks with Constrained Devices: Problem Statement and Requirements

2. Terminology for Constrained-Node Networks

3. Attack Landscape H12019https://blog-assets.f-secure.com/wp-content/uploads/2019/09/12093807/2019_attack_landscape_report.pdf

4. The Internet of Things: do more devices mean more risks?

5. Constraint Analysis for Security Policy Partitioning Over Tactical Service Oriented Architectures;Gkioulos,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3