Nobiletin Ameliorates Cellular Damage and Stress Response and Restores Neuronal Identity Altered by Sodium Arsenate Exposure in Human iPSCs-Derived hNPCs

Author:

Jahan SadafORCID,Ansari Uzair AhmadORCID,Siddiqui Arif JamalORCID,Iqbal DanishORCID,Khan JohraORCID,Banawas SaeedORCID,Alshehri Bader,Alshahrani Mohammed MeraeORCID,Alsagaby Suliman A.ORCID,Redhu Neeru Singh,Pant Aditya Bhushan

Abstract

Environmental exposure to arsenic has been profoundly associated with chronic systemic disorders, such as neurodegeneration, in both experimental models and clinical studies. The neuronal cells of the brain and the nervous system have a limited regeneration capacity, thus making them more vulnerable to exposure to xenobiotics, leading to long-lasting disabilities. The functional and anatomical complexity of these cells hinders the complete understanding of the mechanisms of neurodegeneration and neuroprotection. The present investigations aimed to evaluate the neuroprotective efficacy of a herbal formulation of Nobiletin (NOB) against the toxic insult induced by sodium arsenate (NA) in human neural progenitor cells (hNPCs) derived from human induced pluripotent stem cells (hiPSCs). Prior to the neuroprotective experiments, biologically safe doses of both NOB and NA were ascertained using standard endpoints of cytotoxicity. Thereafter, the hNPCs were exposed to either NOB (50 μM) or NA (50 μM) and co-exposed to biologically safe concentrations of NA (50 μM) with NOB (50 μM) for a period of up to 48 h. NOB treatment restored the morphological damage (neurite damage), the levels of stress granule G3BP1 (Ras-GTPase-activating protein (SH3 domain)-binding protein) and TIA1 (T cell-restricted intracellular antigen), and the expression of neuronal markers (Tuj1, Nestin, MAP2, and PAX6) when compared to NA-exposed cells. A substantial restoration of reactive oxygen species and mitochondrial membrane potential was also witnessed in the co-exposure group (NA + NOB) in comparison to the NA-exposed group. The findings suggest that NOB possesses a significant restorative/protective potential against the NA challenge in hNPCs under experimental conditions and imply that nobiletin may impart a potential therapeutic impact if studied adequately using in vivo studies.

Funder

Deputyship for Research & lnnovation, Ministry of Education in Saudi Arabia

Publisher

MDPI AG

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3