Sparse-Input Neural Networks to Differentiate 32 Primary Cancer Types on the Basis of Somatic Point Mutations

Author:

Dikaios NikolaosORCID

Abstract

Background and Objective: This paper aimed to differentiate primary cancer types from primary tumor samples on the basis of somatic point mutations (SPMs). Primary cancer site identification is necessary to perform site-specific and potentially targeted treatment. Current methods such as histopathology and lab tests cannot accurately determine cancer origin, which results in empirical patient treatment and poor survival rates. The availability of large deoxyribonucleic acid sequencing datasets has allowed scientists to examine the ability of somatic mutations to classify primary cancer sites. These datasets are highly sparse since most genes will not be mutated, have a low signal-to-noise ratio, and are often imbalanced since rare cancers have fewer samples. Methods: To overcome these limitations a sparse-input neural network (SPINN) is suggested that projects the input data in a lower-dimensional space, where the more informative genes are used for learning. To train and evaluate SPINN, an extensive dataset for SPM was collected from the cancer genome atlas containing 7624 samples spanning 32 cancer types. Different sampling strategies were performed to balance the dataset. SPINN was further validated on an independent ICGC dataset that contained 226 samples spanning four cancer types. Results and Conclusions: SPINN consistently outperformed classification algorithms such as extreme gradient boosting, deep neural networks, and support vector machines, achieving an accuracy up to 73% on independent testing data. Certain primary cancer types/subtypes (e.g., lung, brain, colon, esophagus, skin, and thyroid) were classified with an F-score > 0.80.

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3