Removal of Amoxicillin Antibiotic from Polluted Water by a Magnetic Bionanocomposite Based on Carboxymethyl Tragacanth Gum-Grafted-Polyaniline

Author:

Mosavi Seyedeh Soghra,Zare Ehsan NazarzadehORCID,Behniafar Hossein,Tajbakhsh Mahmood

Abstract

Removal of antibiotics from contaminated water is very important because of their harmful effects on the environment and living organisms. This study describes the preparation of a bionanocomposite of carboxymethyl tragacanth gum-grafted-polyaniline and γFe2O3 using an in situ copolymerization method as an effective adsorbent for amoxicillin antibiotic remediation from polluted water. The prepared materials were characterized by several analyses. The vibrating sample magnetometer and thermal gravimetric analysis showed that the carboxymethyl tragacanth gum-grafted-polyaniline@ γFe2O3 bionanocomposite has a magnetization saturation of 25 emu g−1 and thermal stability with a char yield of 34 wt%, respectively. The specific surface area of bionanocomposite of about 8.0794 m2/g was obtained by a Brunauer–Emmett–Teller analysis. The maximum adsorption capacity (909.09 mg/g) of carboxymethyl tragacanth gum-grafted-polyaniline@ γFe2O3 was obtained at pH 7, an agitation time of 20 min, a bioadsorbent dose of 0.005 g, and amoxicillin initial concentration of 400 mg/L. The Freundlich isotherm and pseudo-second-order kinetic models were a better fit with the experimental data. The kinetic model showed that chemical adsorption is the main mechanism for the adsorption of amoxicillin on the bioadsorbent. In addition, the maximum adsorption capacity for amoxicillin compared to other reported adsorbents showed that the prepared bionanocomposite has a higher maximum adsorption capacity than other adsorbents. These results show that carboxymethyl tragacanth gum-grafted-polyaniline@ γFe2O3 would be a favorable bioadsorbent for the remediation of amoxicillin from contaminated water.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3