Environment-Aware Adaptive Reinforcement Learning-Based Routing for Vehicular Ad Hoc Networks

Author:

Jiang Yi1ORCID,Zhu Jinlin1ORCID,Yang Kexin1

Affiliation:

1. Department of Communications Engineering, Harbin University of Science and Technology, Harbin 150080, China

Abstract

With the rapid development of the intelligent transportation system (ITS), routing in vehicular ad hoc networks (VANETs) has become a popular research topic. The high mobility of vehicles in urban streets poses serious challenges to routing protocols and has a significant impact on network performance. Existing topology-based routing is not suitable for highly dynamic VANETs, thereby making location-based routing protocols the preferred choice due to their scalability. However, the working environment of VANETs is complex and interference-prone. In wireless-network communication, the channel contention introduced by the high density of vehicles, coupled with urban structures, significantly increases the difficulty of designing high-quality communication protocols. In this context, compared to topology-based routing protocols, location-based geographic routing is widely employed in VANETs due to its avoidance of the route construction and maintenance phases. Considering the characteristics of VANETs, this paper proposes a novel environment-aware adaptive reinforcement routing (EARR) protocol aimed at establishing reliable connections between source and destination nodes. The protocol adopts periodic beacons to perceive and explore the surrounding environment, thereby constructing a local topology. By applying reinforcement learning to the vehicle network’s route selection, it adaptively adjusts the Q table through the perception of multiple metrics from beacons, including vehicle speed, available bandwidth, signal-reception strength, etc., thereby assisting the selection of relay vehicles and alleviating the challenges posed by the high dynamics, shadow fading, and limited bandwidth in VANETs. The combination of reinforcement learning and beacons accelerates the establishment of end-to-end routes, thereby guiding each vehicle to choose the optimal next hop and forming suboptimal routes throughout the entire communication process. The adaptive adjustment feature of the protocol enables it to address sudden link interruptions, thereby enhancing communication reliability. In experiments, the EARR protocol demonstrates significant improvements across various performance metrics compared to existing routing protocols. Throughout the simulation process, the EARR protocol maintains a consistently high packet-delivery rate and throughput compared to other protocols, as well as demonstrates stable performance across various scenarios. Finally, the proposed protocol demonstrates relatively consistent standardized latency and low overhead in all experiments.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference46 articles.

1. Survey on artificial intelligence (ai) techniques for vehicular ad-hoc networks (vanets);Mchergui;Veh. Commun.,2022

2. Tfl-dt: A trust evaluation scheme for federated learning in digital twin for mobile networks;Guo;IEEE J. Sel. Areas Commun.,2023

3. Hybrid opportunistic and position-based routing protocol in vehicular ad hoc networks;Ghaffari;J. Ambient. Intell. Humaniz. Comput.,2020

4. Towards general internet of vehicles networking: Routing protocols survey;Ksouri;Concurr. Comput. Pract. Exp.,2022

5. Trove: A context-awareness trust model for vanets using reinforcement learning;Guo;IEEE Internet Things J.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3