Abstract
This paper introduces a gallium nitride (GaN) high electron mobility transistor (HEMT)-based matrix converter for motor friendly drive systems. A fast switching characteristic of the GaN devices causes high dv/dt. This increases the importance of noise immunity and the reduction of parasitic components in system design. In addition, the high dv/dt in motor drive systems leads to voltage spike at a motor input terminal and leakage current through a motor chassis. Accordingly, a gate drive circuit consists of devices with a high common mode transient immunity. A printed circuit board was designed to minimize parasitic inductance, which was analyzed by performing simulations. To mitigate the dv/dt of the voltage applied to the motor and the leakage current, a dv/dt filter and a sine-wave filter were utilized as an output filter of the matrix converter. The effectiveness of each filter was verified by driving an induction motor.
Funder
National Research Foundation of Korea
Korea Institute of Energy Technology Evaluation and Planning
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献