Application of Specific Energy in Evaluation of Geological Conditions Ahead of Tunnel Face

Author:

Liu JiankangORCID,Sakaguchi Osamu,Ishizu Sodai,Luan Hengjie,Han Wei,Jiang YujingORCID

Abstract

In underground construction, especially tunnel building, a detailed knowledge of the geological conditions ahead of the tunnel face is essential for both safety and efficiency of work. Many tunnel collapses have been reported to occur because of a lack of accurate evaluation of the geological conditions. While conventional horizontal boring conducted from a tunnel face provides good accuracy, it is infrequently conducted due to its high cost and time-consuming nature. In addition, the tunnel seismic reflection method has limited practicality owing to the complexity of data processing. This paper presents a new approach based on the specific energy of the mechanical drilling rig to evaluate the geological conditions ahead of the tunnel face. In order to assess the geological conditions, rock mass quality index, buried depth of the tunnel and tunnel deformation investigation were undertaken, and the obtained data were compared to the specific energy. Results from the comparison reveal the evaluation criterion that if the distribution of specific energy in some areas deviates from the distribution of buried depth, it is considered that abnormal geological conditions exist in this area. This work can greatly contribute to the accurate and effective evaluation of the geological conditions ahead of the tunnel face.

Funder

Natural Science Foundation of Shandong Province

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3