Ecological Restoration and Protection of National Land Space in Coal Resource-Based Cities from the Perspective of Ecological Security Pattern: A Case Study in Huaibei City, China

Author:

Li Zixuan1,Chang Jiang123,Li Cheng1,Gu Sihao4

Affiliation:

1. School of Architecture and Design, China University of Mining and Technology, Xuzhou 221116, China

2. Jiangsu Collaborative Innovation Center for Building Energy Saving and Construct Technology, Jiangsu Vocational Institute of Architectural Technology, Xuzhou 221116, China

3. Research Center for Transition Development and Rural Revitalization of Resource-Based Cities in China, China University of Mining and Technology, Xuzhou 221116, China

4. School of Architecture and Urban Planning, Nanjing University, Nanjing 210093, China

Abstract

Mining activities have contributed to the growth of the city, but also raised non-negligible eco-geological environmental issues that threaten ecological safety. Ecological security pattern (ESP), as an important grip on the ecological restoration and protection of national land space, helps to balance mining activities and ecological protection in coal resource-based cities. Taking Huaibei City as a study area, we applied the ESP research paradigm: an ecosystem “function-structure” conceptual framework was developed to identify ecological sources, the “coal mining subsidence—economic activities” framework was used to revise ecological resistance surface, and the circuit theory was used to extract ecological corridors. Then, key areas for ecological restoration and protection were identified, including ecological pinch points, barrier points, and fracture points. Finally, the pattern and strategies for ecological restoration and protection were proposed. Study results show that there were 51 ecological sources, covering an area of 152.75 km2; 111 ecological corridors were extracted with 6000 as truncation threshold; 17 pinch points, 75 barrier points, and 117 fracture points were identified. Ecological restoration and protection patterns of “one axis, two shields, four zones, eight belts and multiple corridors”, and strategies for key areas were proposed. The results of the study are important for the sustainable development of coal-resource-based cities.

Funder

National Natural Science Foundation of China

Jiangsu Collaborative Innovation Center for Building Energy Saving and Construct Technology

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3