Effect of Light Heterogeneity Caused by Photovoltaic Panels on the Plant–Soil–Microbial System in Solar Park

Author:

Li Cui1,Liu Jinxian2,Bao Jiabing2,Wu Tiehang3ORCID,Chai Baofeng2

Affiliation:

1. College of Resource and Environment, Shanxi University of Finance and Economics, Taiyuan 030006, China

2. Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China

3. Department of Biology, Georgia Southern University, Statesboro, GA 30460-8042, USA

Abstract

The large-scale construction of photovoltaic (PV) panels causes heterogeneity in environmental factors, such as light, precipitation, and wind speed, which may lead to microhabitat climate changes that may affect ecosystems. In this study, plant–soil–microbial systems in shady and non-shady gaps of PV panels in a solar park in Northern China were investigated. The shading caused by the PV panels significantly affected the alpha diversity of plant and fungal communities (p < 0.05). The compositions of plant and soil microbial (bacteria, fungi, and protists) communities were significantly different between shady and non-shady areas (p < 0.05), and the beta diversity of the plant community was significantly correlated with that of the soil microbial community (p < 0.05). Shading enhanced the complexity of microbial communities by strengthening the associations among soil microbes. Photosynthetically active radiation was the main driving factor in the assembly of aboveground and belowground communities on a small scale, and it indirectly shaped the microbial community through its effects on the plant community. This study highlights the important effects of light on microbial community formation and on the relationships among communities in plant–soil–microbial systems. Thus, the effects of solar park establishment on degraded ecosystems should be considered.

Funder

National Science Foundation of China

Central Government Guided Local Science and Technology Development Fund Project

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3