Abstract
Erosive rainfall results in the loss of both soil and nutrients, which indirectly triggers soil deterioration and a reduction in land productivity. However, how rainfall affects runoff, soil erosion, and nutrient loss under different crop rotation patterns and topographic factors remains unclear. This experiment observed nine runoff-erosion plots on the Chinese Loess Plateau (CLP) from 2019 to 2020 to determine the effects of crop type, rotation pattern, and slope gradient and length on runoff, soil erosion, and nutrient loss. Runoff, soil erosion, and nutrient loss were highest for the fallow plots; values for these variables for spring corn and winter wheat plots were not significantly different. Crop rotation generated greater runoff, soil erosion, and nutrient loss compared to non-rotation. Soil erosion and associated nutrient loss increased, but not significantly, with slope for gradients of 0.5°, 1°, and 3°, while runoff and associated nutrient loss did not increase. In addition, soil erosion and associated nutrient loss were significantly greater for slope lengths of 20 m vs. 50 m. A structural equation model showed rainfall characteristics significantly impacted runoff and soil erosion and subsequently affected nutrient loss. This study increases the understanding of runoff, soil erosion, and nutrient loss from cropland with gentle slopes on the CLP.
Funder
National Natural Science Foundation of China
China Postdoctoral Science Foundation
Natural Science Fund of Shaanxi Province
Subject
Nature and Landscape Conservation,Ecology,Global and Planetary Change
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献