How Much Complexity Is Required for Modelling Grassland Production at Regional Scales?

Author:

Vogeler Iris12ORCID,Kluß Christof1ORCID,Peters Tammo1ORCID,Taube Friedhelm13

Affiliation:

1. Grass and Forage Science/Organic Agriculture, Christian Albrechts University, 24118 Kiel, Germany

2. Department of Agroecology, Aarhus University, 8830 Tjele, Denmark

3. Grass Based Dairy Systems, Animal Production Systems Group, Wageningen University, 6708 WD Wageningen, The Netherlands

Abstract

Studies evaluating the complexity of models, which are suitable to simulate grass growth at regional scales in intensive grassland production systems are scarce. Therefore, two different grass growth models (GrasProg1.0 and APSIM) with different complexity and input requirements were compared against long-term observations from variety trials with perennial ryegrass (Lolium perenne) in Germany and Denmark. The trial sites covered a large range of environmental conditions, with annual average temperatures ranging from 5.9 to 10.3 °C, and annual rainfall from 536 to 1154 mm. The sites also varied regarding soil type, which were for modelling categorised into three different groups according to their plant available water (PAW) content: light soils with a PAW of 60 mm, medium soils with a PAW of 80 mm, and heavy soils with a PAW of 100 mm. The objective was to investigate whether the simple model performed equally well with the given low number of inputs, namely climate and PAW group. Evaluation statistics showed that both models provided satisfactory results, with root mean square errors for individual cuts ranging from 0.59 to 1.28 t dry matter ha−1. The model efficiency (Nash–Sutcliffe efficiency) for the separate cuts were also good for both models, with 81% of the sites having a positive Nash–Sutcliffe efficiency value with GrasProg1.0, and 72% with APSIM. These results reveal that without detailed site-specific descriptions, the less complex GrasProg1.0 model can be incorporated into a simple decision support tool for optimising grassland management in intensive livestock production systems.

Funder

arismo GmbH

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3