Optimal Regional Allocation of Future Population and Employment under Urban Boundary and Density Constraints: A Spatial Interaction Modeling Approach

Author:

Lee David Jung-Hwi1ORCID,Guldmann Jean-Michel2ORCID

Affiliation:

1. Tennessee Department of Transportation, Long Range Planning Division, Nashville, TN 37243, USA

2. Department of City and Regional Planning, The Ohio State University, Columbus, OH 43210, USA

Abstract

This paper develops an optimization modeling framework to select strategies of land development and population and employment densities for a growing metropolitan area. The modeling core involves a non-linear commuting model, which accounts for spatial structure variables and is empirically estimated by Tobit regression. This commuting model is then embedded into a non-linear optimization model that allocates increments in the population and employment (activities) to available land, while minimizing the total future commuting costs under various combinations of land expansion boundaries and population and employment densities. The resulting minimum cost surface is approximated via polynomial regression and combined with land development and congestion cost functions to derive the overall optimal strategy. These models are estimated and calibrated with data from the Census Transportation Planning Package (CTPP) and Auditor’s property database, and are applied to the Fredericksburg metropolitan area, Virginia. The results demonstrate that the optimal development densities are very sensitive to the congestion cost function. A land development strategy that allows for limited sprawl might be a smart policy to reduce both regional vehicle mile travel (VMT) and related congestion and pollution.

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3