Spatial Pattern of Changing Vegetation Dynamics and Its Driving Factors across the Yangtze River Basin in Chongqing: A Geodetector-Based Study

Author:

Yao Bo123,Ma Lei14,Si Hongtao14,Li Shaohua14,Gong Xiangwen1234,Wang Xuyang23

Affiliation:

1. Observation and Research Station of Ecological Restoration for Chongqing Typical Mining Areas, Ministry of Natural Resources, Chongqing Institute of Geology and Mineral Resources, Chongqing 401120, China

2. Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China

3. University of Chinese Academy of Sciences, Beijing 100049, China

4. Wansheng Mining Area Ecological Environment Protection and Restoration of Chongqing Observation and Research Station, Chongqing Institute of Geology and Mineral Resources, Chongqing 401120, China

Abstract

Revealing the spatial dynamics of vegetation change in Chongqing and their driving mechanisms is of major value to regional ecological management and conservation. Using several data sets, including the SPOT Normalized Difference Vegetation Index (NDVI), meteorological, soil, digital elevation model (DEM), human population density and others, combined with trend analysis, stability analysis, and geographic detectors, we studied the pattern of temporal and spatial variation in the NDVI and its stability across Chongqing from 2000 to 2019, and quantitatively analyzed the relative contribution of 18 drivers (natural or human variables) that could influence vegetation dynamics. Over the 20-year period, we found that Chongqing region’s NDVI had an annual average value of 0.78, and is greater than 0.7 for 93.52% of its total area. Overall, the NDVI increased at a rate of 0.05/10 year, with 81.67% of the areas undergoing significant expansion, primarily in the metropolitan areas of Chongqing’s Three Gorges Reservoir Area (TGR) and Wuling Mountain Area (WMA). The main factors influencing vegetation change were human activities, climate, and topography, for which the most influential variables respectively were night light brightness (NLB, 51.9%), annual average air temperature (TEM, 47%), and elevation (ELE, 44.4%). Furthermore, we found that interactions between differing types of factors were stronger than those arising between similar ones; of all pairwise interaction types tested, 92.9% of them were characterized by two-factor enhancement. The three most powerful interactions detected were those for NLB ∩ TEM (62.7%), NLB ∩ annual average atmospheric pressure (PRS, 62.7%), and NLB ∩ ELE (61.9%). Further, we identified the most appropriate kind or range of key elements shaping vegetation development and dynamics. Altogether, our findings can serve as a timely scientific foundation for developing a vegetative resource management strategy for the Yangtze River basin that duly takes into account local climate, terrain, and human activity.

Funder

Open Subject Funding of Observation and Research Station of Ecological Restoration for Chongqing Typical Mining Areas, Ministry of Natural Resources

Chongqing Natural Science Foundation

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3