RePlant Alfa: Integrating Google Earth Engine and R Coding to Support the Identification of Priority Areas for Ecological Restoration

Author:

Morales Narkis S.1ORCID,Fernández Ignacio C.2ORCID,Durán Leonardo P.34ORCID,Pérez-Martínez Waldo A.34ORCID

Affiliation:

1. Departamento de Ecosistemas y Medio Ambiente, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile

2. Centro de Modelación y Monitoreo de Ecosistemas, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 7500994, Chile

3. Escuela de Ingeniería Forestal, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 7500994, Chile

4. Hémera Centro de Observación de la Tierra, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 7500994, Chile

Abstract

Land degradation and climate change are among the main threats to the sustainability of ecosystems worldwide. As a result, the restoration of degraded landscapes is essential to maintaining the functionality of ecosystems, especially those with greater social, economic, and environmental vulnerability. Nevertheless, policymakers are frequently challenged by deciding where to prioritize restoration actions, which usually includes dealing with multiple and complex needs under an always limited budget. If these decisions are not taken based on proper data and processes, restoration implementation can easily fail. In order to help decision-makers take informed decisions on where to implement restoration activities, we have developed a semiautomatic geospatial platform to prioritize areas for restoration activities based on ecological, social, and economic variables. This platform takes advantage of the potential to integrate R coding, Google Earth Engine cloud computing, and GIS visualization services to generate an interactive geospatial decision-maker tool for restoration. Here, we present a prototype version called “RePlant alpha”, which was tested with data from the Central Zone of Chile. This exercise proved that integrating R and GEE was feasible, and that the analysis with at least six indicators for a specific region was also feasible to implement even from a personal computer. Therefore, the use of a virtual machine in the cloud with a large number of indicators over large areas is both possible and practical.

Funder

Center for Earth Observation

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3