Abstract
Autonomous vehicles enable the development of smart warehouses and smart factories with an increased visibility, flexibility and efficiency. Thus, effective and affordable localisation methods for indoor vehicles are attracting interest to implement real-time applications. This paper presents an Extended Kalman Smoother design to both localise a mobile agent and reconstruct its entire trajectory through a sensor-fusion employing the UHF-RFID passive technology. Extensive simulations are carried out by considering the smoother optimal-window length and the effect of missing measurements from reference tags. Monte Carlo simulations are conducted for different vehicle trajectories and for different linear and angular velocities to evaluate the method accuracy. Then, an experimental analysis with a unicycle wheeled robot is performed in real indoor scenario, showing a position and orientation root mean square errors of 15 cm, and 0.2 rad, respectively.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献