Multi-Objective Optimal Sizing of HRES under Multiple Scenarios with Undetermined Probability

Author:

Li Kaiwen,Song Yuanming,Wang Rui

Abstract

In recent years, technologies for renewable energy utilization have been booming. Hybrid renewable energy systems (HRESs), integrating multiple energy sources to mitigate the unstable, unpredictable, and intermittent characteristics of a single renewable energy source, have become increasingly popular. However, due to the inherent intermittency and uncertainty of renewable energies, the impact of uncertain factors on the capacity optimization of HRESs needs to be considered. In the traditional scenario-based planning method, when dealing with uncertain factors, the probability corresponding to the scenario is difficult to determine. Furthermore, when applying the robust optimization method, it is difficult to fully use existing data to describe uncertain parameters in the form of intervals. To tackle these difficulties, this study proposes a probability undetermined scenario-based sizing model (PUSS model) for stand-alone HRES configuration optimization and a multi-objective evolutionary algorithm as the problem solver. The solution set obtained by the method covers multiple possible values of scenario probability combinations and can provide decision-makers with an overview of alternatives for HRES sizing under different power supply pressures. Based on the real environment data and load data of a certain place, the proposed model and algorithm are applied to sizing a typical HRES comprising wind generators, solar photovoltaic panels, energy-storage devices, and diesel generators. The experimental results show that the proposed PUSS method is both effective and efficient.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3