Exploring Radial Kernel on the Novel Forced SEYNHRV-S Model to Capture the Second Wave of COVID-19 Spread and the Variable Transmission Rate

Author:

Alshammari Fehaid SalemORCID,Tezcan Ezgi Akyildiz

Abstract

The transmission rate of COVID-19 varies over time. There are many reasons underlying this mechanism, such as seasonal changes, lockdowns, social distancing, and wearing face masks. Hence, it is very difficult to directly measure the transmission rate. The main task of the present paper was to identify the variable transmission rate (β1) for a SIR-like model. For this, we first propose a new compartmental forced SEYNHRV-S differential model. We then drive the nonlinear differential equation and present the finite difference technique to obtain the time-dependent transmission rate directly from COVID-19 data. Following this, we show that the transmission rate can be represented as a linear combination of radial kernels, where several forms of radial kernels are explored. The proposed model is flexible and general, so it can be adapted to monitor various epidemic scenarios in various countries. Hence, the model may be of interest for policymakers as a tool to evaluate different possible future scenarios. Numerical simulations are presented to validate the prediction of our SEYNHRV and forced SEYNHRV-S models, where the data from confirmed COVID-19 cases reported by the Ministry of Health in Saudi Arabia were used. These confirmed cases show the second wave of the infected population in Saudi Arabia. By using the COVID-19 data, we show that our model (forced SEYNHRV-S) is able to predict the second wave of infection in the population in Saudi Arabia. It is well known that COVID-19 epidemic data cannot be accurately represented by any compartmental approach with constant parameters, and this is also true for our SEYNHRV model.

Funder

Imam Mohammad Ibn Saud Islamic University

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference24 articles.

1. Coronavirus Disease (COVID-19) Pandemichttps://www.who.int/emergencies/diseases/novel-coronavirus-2019

2. COVID-19 Modeling: A Review;Cao;arXiv,2021

3. A contribution to the mathematical theory of epidemics;Kermack;Proc. R. Soc. A,1927

4. Mathematical modeling of the spread of the coronavirus disease 2019 (COVID-19) taking into account the undetected infections. The case of China

5. Modeling vaccination rollouts, SARS-CoV-2 variants and the requirement for non-pharmaceutical interventions in Italy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3