TPBF: Two-Phase Bloom-Filter-Based End-to-End Data Integrity Verification Framework for Object-Based Big Data Transfer Systems

Author:

Kasu PreethikaORCID,Hamandawana PrinceORCID,Chung Tae-Sun

Abstract

Computational science simulations produce huge volumes of data for scientific research organizations. Often, this data is shared by data centers distributed geographically for storage and analysis. Data corruption in the end-to-end route of data transmission is one of the major challenges in distributing the data geographically. End-to-end integrity verification is therefore critical for transmitting such data across data centers effectively. Although several data integrity techniques currently exist, most have a significant negative influence on the data transmission rate as well as the storage overhead. Therefore, existing data integrity techniques are not viable solutions in high performance computing environments where it is very common to transfer huge volumes of data across data centers. In this study, we propose a two-phase Bloom-filter-based end-to-end data integrity verification framework for object-based big data transfer systems. The proposed solution effectively handles data integrity errors by reducing the memory and storage overhead and minimizing the impact on the overall data transmission rate. We investigated the memory, storage, and data transfer rate overheads of the proposed data integrity verification framework on the overall data transfer performance. The experimental findings showed that the suggested framework had 5% and 10% overhead on the total data transmission rate and on the total memory usage, respectively. However, we observed significant savings in terms of storage requirements, when compared with state-of-the-art solutions.

Funder

MSIT (Ministry of Science and ICT), Korea, under the ITRC (Information Technology Research Center) support program supervised by the IITP

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference60 articles.

1. CERNhttps://home.cern/

2. LIGOhttps://www.ligo.caltech.edu/

3. Data Never Sleeps 5.0https://www.domo.com/learn/infographic/data-never-sleeps-5

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3