Static and Dynamic Stability of Carbon Fiber Reinforced Polymer Cylindrical Shell Subject to Non-Normal Boundary Condition with One Generatrix Clamped

Author:

Yang ShaowuORCID,Hao Yuxin,Zhang Wei,Liu Lingtao,Ma Wensai

Abstract

In this paper, static and dynamic stability analyses taking axial excitation into account are presented for a laminated carbon fiber reinforced polymer (CFRP) cylindrical shell under a non-normal boundary condition. The non-normal boundary condition is put forward to signify that both ends of the cylindrical shell are free and one generatrix of the shell is clamped. The partial differential motion governing the equations of the laminated CFRP cylindrical shell with a non-normal boundary condition is derived using the Hamilton principle, nonlinear von-Karman relationships and first-order deformation shell theory. Then, nonlinear, two-freedom, ordinary differential equations on the radial displacement of the cylindrical shell are obtained utilizing Galerkin method. The Newton-Raphson method is applied to numerically solve the equilibrium point. The stability of the equilibrium point is determined by analyzing the eigenvalue of the Jacobian matrix. The solution of the Mathieu equation describes the dynamic unstable behavior of the CFRP laminated cylindrical shells. The unstable regions are determined using the Bolotin method. The influences of the radial line load, the ratio of radius to thickness, the ratio of length to thickness, the number of layers and the temperature field of the laminated CFRP cylindrical shell on static and dynamic stability are investigated.

Funder

National Natural Science Foundation of China

Scientific Research Project of Beijing Educational Committee

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3