Abstract
Evaluations of the risk of fault-induced water inrush hazard is an important issue for mining engineering applications. According to the characteristics of the seam floor during mining advancing, a mechanical model of fault activation is built to obtain the equations of normal stress and shear stress on the surface of fault, as well as the mechanics criterion of fault activation. Furthermore, using FLAC3D numerical software, the stress variation on the surface of fault under two different mining advancing directions are numerically simulated, and the distribution characteristics of the plastic failure zone of the roof and floor near the fault are obtained. The results show that: (1) When mining advances from the hanging wall, the normal stress increases more greatly than that from the foot wall, the shear stress distribution changes drastically with a large peak, and it is more likely to cause fault activation. (2) When mining advances from the hanging wall and approaches the fault, the normal stress and shear stress within the fault first increases, and then decreases suddenly. When mining advances from the foot wall, the normal stress and shear stress increases constantly, and the fault zone stays in the compaction state where the hanging wall and foot wall are squeezed together, which is unfavorable for water inrush hazard. (3) When mining advances from the hanging wall, the deep-seated fault under the floor is damaged first, and the plastic failure zone of the floor increases obviously. When mining advances from the foot wall, the shallow fault under the floor is damaged first, and the plastic failure zone of roof increases obviously. (4) For a water-conducting fault, the waterproof coal pillar size of the mining advancing from the hanging wall should be larger than that from the foot wall. (5) The in-situ monitoring results are in agreement with the simulation results, which proves the effectiveness of the simulation.
Funder
National Natural Science Foundation of China
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献