On the Efficiency of Staggered C-Grid Discretization for the Inviscid Shallow Water Equations from the Perspective of Nonstandard Calculus

Author:

Zijlema MarcelORCID

Abstract

This paper provides a rationale for the commonly observed numerical efficiency of staggered C-grid discretizations for solving the inviscid shallow water equations. In particular, using the key concepts of nonstandard calculus, we aim to show that the grid staggering of the primitive variables (surface elevation and normal velocity components) is capable of dealing with flow discontinuities. After a brief introduction of hyperreals through the notion of infinitesimal increments, a nonstandard rendition of the governing equations is derived that essentially turns into a finite procedure and permits a convenient way of modeling the hydraulic jumps in open channel flow. A central result of this paper is that the discrete formulations thus obtained are distinguished by the topological structures of the solution fields and subsequently provide a natural framework for the staggered discretization of the governing equations. Another key of the present study is to demonstrate that the discretization naturally regularizes the solution of the inviscid flow passing through the hydraulic jump without the need of non-physical dissipation. The underlying justification is provided by analytically studying the distributions of the flow variables across an infinitesimal thin hydraulic jump along with the use of hyperreal Heaviside step functions. This main finding is shown to be useful to comprehend the importance of the application of staggered finite difference schemes to accurately predict rapidly varying free-surface flows. A numerical experiment is provided to confirm this result.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference44 articles.

1. Weak solutions of nonlinear hyperbolic equations and their numerical computation

2. Systems of conservation laws

3. Finite Volume Methods for Hyperbolic Problems;LeVeque,2004

4. Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction;Toro,2009

5. Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves;Lax,1973

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3