Abstract
In this paper, we use a similar approach to the one proposed by Chen and Jiao to calculate the mathematical formulas of the generating function V(z,t) and the mass function Pm(t) of a cross-talking pathways model in large parameter regions. Together with kinetic rates from yeast and mouse genes, our numerical examples reveal novel bimodal mRNA distributions for intermediate times, whereby the mode of distribution Pm(t) displays unimodality with the peak at m=0 for initial and long times, which has not been obtained in previous works. Such regulation of mRNA distribution exactly matches the transcriptional dynamics for the osmosensitive genes in Saccharomyces cerevisiae, which has not been generated by those models with one single pathway or feedback loops. This paper may provide us with a novel observation on transcriptional distribution dynamics regulated by multiple signaling pathways in response to environmental changes and genetic perturbations.
Funder
the National Natural Science Foundation of China
the Natural Science Projects of Universities in Guangdong Province of China
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献