An Automatic Method for Delimiting Deformation Area in InSAR Based on HNSW-DBSCAN Clustering Algorithm

Author:

Han Jianfeng1,Guo Xuefei1,Jiao Runcheng1,Nan Yun1,Yang Honglei2ORCID,Ni Xuan1,Zhao Danning1,Wang Shengyu1,Ma Xiaoxue1,Yan Chi1,Ma Chi1,Zhao Jia1

Affiliation:

1. Beijing Institute of Geological Hazard Prevention, Beijing 100120, China

2. School of Land Science and Technology, China University of Geosciences, Beijing 100083, China

Abstract

InSAR (Interferometric Synthetic Aperture Radar) is widely recognized as a crucial remote sensing tool for monitoring various geological disasters because it provides all-day and all-weather monitoring. Nevertheless, the current interpretation methods for InSAR heavily depend on the interpreter’s experience, which hinders efficiency and fails to meet the requirements for the timely detection of geologic hazards. Furthermore, the results obtained through current InSAR processing carry inherent noise interference, further complicating the interpretation process. To address those issues, this paper proposes an approach that enables automatic and rapid identification of deformation zones. The proposed method leverages IPTA (Interferometric Point Target Analysis) technology for SAR data processing. It combines the power of HNSW (Hierarchical Navigable Small Word) and DBSCAN (Density-Based Spatial Clustering of Applications with Noise) algorithms to cluster deformation results. Compared with traditional methods, the computational efficiency of the proposed method is improved by 11.26 times, and spatial noise is suppressed. Additionally, the clustering results are fused with slope units determined using DEM (Digital Elevation Model), which facilitates the automatic identification of slopes experiencing deformation. The experimental verification in the western mountainous area of Beijing has identified 716 hidden danger areas, and this method is superior to the traditional technology in speed and automation.

Funder

the Project of Beijing sudden geological disaster monitoring and early warning system

the early identification and early warning of typical geological disasters in Xishan, Beijing Demonstration Study

the intelligent early identification method and prevention countermeasures of typical geological hazards in Beijing

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3