MOON: A Subspace-Based Multi-Branch Network for Object Detection in Remotely Sensed Images

Author:

Zhang Huan1ORCID,Leng Wei1,Han Xiaolin2ORCID,Sun Weidong1

Affiliation:

1. Department of Electronic Engineering, Tsinghua University, Beijing 100084, China

2. School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China

Abstract

The effectiveness of training-based object detection heavily depends on the amount of sample data. But in the field of remote sensing, the amount of sample data is difficult to meet the needs of network training due to the non-cooperative imaging modes and complex imaging conditions. Moreover, the imbalance of the sample data between different categories may lead to the long-tail problem during the training. Given that similar sensors, data acquisition approaches, and data structures could make the targets in different categories possess certain similarities, those categories can be modeled together within a subspace rather than the entire space to leverage the amounts of sample data in different subspaces. To this end, a subspace-dividing strategy and a subspace-based multi-branch network is proposed for object detection in remotely sensed images. Specifically, a combination index is defined to depict this kind of similarity, a generalized category consisting of similar categories is proposed to represent the subspace, and a new subspace-based loss function is devised to address the relationship between targets in one subspace and across different subspaces to integrate the sample data from similar categories within a subspace and to balance the amounts of sample data between different subspaces. Furthermore, a subspace-based multi-branch network is constructed to ensure the subspace-aware regression. Experiments on the DOTA and HRSC2016 datasets demonstrated the superiority of our proposed method.

Funder

National Natural Science Foundation

Cross-Media Intelligent Technology Project of BNRist

Beijing Institute of Technology Research Fund Program for Young Scholars

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3