Analysis of Deformation Dynamics in Guatemala City Metropolitan Area Using Persistent Scatterer Interferometry

Author:

García-Lanchares Carlos123ORCID,Marchamalo-Sacristán Miguel12ORCID,Fernández-Landa Alfredo2ORCID,Sancho Candela2,Krishnakumar Vrinda2ORCID,Benito Belén3ORCID

Affiliation:

1. Department of Land Morphology & Engineering, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain

2. Detektia Earth Surface Monitoring S.L., C/ Faraday 7, 28049 Madrid, Spain

3. ETSI Topografía, Geodesia y Cartografía, Universidad Politécnica de Madrid, 28040 Madrid, Spain

Abstract

The analysis of deformation dynamics in Guatemala city and its surrounding region presented in this paper holds significant relevance due to the high vulnerability of this area to natural disasters, combined with its rapid urbanization, similar to most Central American cities, contrasting with a lack of InSAR and deformation studies in the region. A total of 226 SAR images from Sentinel-1 A and B satellites in both ascending and descending geometries were processed with the Persistent Scatterer Interferometry (PSI) technique employing the SNAP-StaMPS integrated processing chain. The study area encompasses the Metropolitan Region of Guatemala, which is characterized by a diverse and active geological framework, with a historical record of earthquakes, intense groundwater extraction, and local subsidence phenomena, causing fissures and sinkholes. Four active areas were identified in the study area, each covering more than 50 hectares, with subsidence velocities greater than 10 mm/yr. This study provides valuable insights into fostering the sustainable development of this region by identifying deformation patterns, characterizing main active areas, and evaluating associated risks for disaster management and prevention. The results can also aid informed decision-making processes and guide urban planning and resource management strategies in other Central American countries. The application of InSAR studies is crucial for improving safety and sustainability in urban environments and natural resource management in vulnerable regions.

Funder

Comunidad de Madrid, Industrial doctorates program

ERDF A way of making Europe

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3