Invariant Attribute-Driven Binary Bi-Branch Classification of Hyperspectral and LiDAR Images

Author:

Zhang Jiaqing1ORCID,Lei Jie1ORCID,Xie Weiying1ORCID,Li Daixun1

Affiliation:

1. State Key Laboratory of Integrated Service Networks, Xidian University, Xi’an 710071, China

Abstract

The fusion of hyperspectral and LiDAR images plays a crucial role in remote sensing by capturing spatial relationships and modeling semantic information for accurate classification and recognition. However, existing methods, such as Graph Convolutional Networks (GCNs), face challenges in constructing effective graph structures due to variations in local semantic information and limited receptiveness to large-scale contextual structures. To overcome these limitations, we propose an Invariant Attribute-driven Binary Bi-branch Classification (IABC) method, which is a unified network that combines a binary Convolutional Neural Network (CNN) and a GCN with invariant attributes. Our approach utilizes a joint detection framework that can simultaneously learn features from small-scale regular regions and large-scale irregular regions, resulting in an enhanced structural representation of HSI and LiDAR images in the spectral–spatial domain. This approach not only improves the accuracy of classification and recognition but also reduces storage requirements and enables real-time decision making, which is crucial for effectively processing large-scale remote sensing data. Extensive experiments demonstrate the superior performance of our proposed method in hyperspectral image analysis tasks. The combination of CNNs and GCNs allows for the accurate modeling of spatial relationships and effective construction of graph structures. Furthermore, the integration of binary quantization enhances computational efficiency, enabling the real-time processing of large-scale data. Therefore, our approach presents a promising opportunity for advancing remote sensing applications using deep learning techniques.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3