The Spatiotemporal Distribution of NO2 in China Based on Refined 2DCNN-LSTM Model Retrieval and Factor Interpretability Analysis
-
Published:2023-08-30
Issue:17
Volume:15
Page:4261
-
ISSN:2072-4292
-
Container-title:Remote Sensing
-
language:en
-
Short-container-title:Remote Sensing
Author:
Chen Ruming12, Hu Jiashun12, Song Zhihao12, Wang Yixuan12, Zhou Xingzhao12, Zhao Lin12, Chen Bin12
Affiliation:
1. College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China 2. Collaborative Innovation Center of Western Ecological Security, Lanzhou 730000, China
Abstract
With the advancement of urbanization in China, effective control of pollutant emissions and air quality have become important goals in current environmental management. Nitrogen dioxide (NO2), as a precursor of tropospheric ozone and fine particulate matter, plays a significant role in atmospheric chemistry research and air pollution control. However, the uneven ground monitoring stations and low temporal resolution of polar-orbiting satellites set challenges for accurately assessing near-surface NO2 concentrations. To address this issue, a spatiotemporal refined NO2 retrieval model was established for China using the geostationary satellite Himawari-8. The spatiotemporal characteristics of NO2 were analyzed and its contribution factors were explored. Firstly, seven Himawari-8 channels sensitive to NO2 were selected by using the forward feature selection based on information entropy. Subsequently, a 2DCNN-LSTM network model was constructed, incorporating the selected channels and meteorological variables as retrieval factors to estimate hourly NO2 in China from March 2018 to February 2020 (with a resolution of 0.05°, per hour). The performance evaluation demonstrates that the full-channel 2DCNN-LSTM model has good fitting capability and robustness (R2 = 0.74, RMSE = 10.93), and further improvements were achieved after channel selection (R2 = 0.87, RMSE = 6.84). The 10-fold cross-validation results indicate that the R2 between retrieval and measured values was above 0.85, the MAE was within 5.60, and the RMSE iwas within 7.90. R2 varied between 0.85 and 0.90, showing better validation at mid-day (R2 = 0.89) and in spring and fall transition seasons (R2 = 0.88 and R2 = 0.90). To investigate the cooperative effect of meteorological factors and other air pollutants on NO2, statistical methods (beta coefficients) were used to test the factor interpretability. Meteorological factors as well as other pollutants were analyzed. From a statistical perspective, PM2.5, boundary layer height, and O3 were found to have the largest impacts on near-surface NO2 concentrations, with each standard deviation change in these factors leading to 0.28, 0.24, and 0.23 in standard deviations of near-surface NO2, respectively. The findings of this study contribute to a comprehensive understanding of the spatiotemporal distribution of NO2 and provide a scientific basis for formulating targeted air pollution policies.
Funder
National Natural Science Foundation of China Gansu Provincial Science and Technology Plan Fundamental Research Funds for the Central Universities
Subject
General Earth and Planetary Sciences
Reference39 articles.
1. Cardiovascular Effects of Ambient Particulate Air Pollution Exposure;Sun;Circulation,2010 2. Vithanage, M., Bandara, P., Novo, L., Kumar, A., Ambade, B., Gnanapragasam, N., Ranagalage, M., and Magana-Arachchi, D. (2022). Deposition of trace metals associated with atmospheric particulate matter: Environmental fate and health risk assessment. Chemosphere, 303. 3. Yun, G., Yang, C., and Ge, S. (2022). Understanding Anthropogenic PM2.5 Concentrations and Their Drivers in China during 1998–2016. Int. J. Environ. Res. Public Health, 20. 4. Natural and anthropogenic contributions to long-term variations of SO2, NO2, CO, and AOD over East China;Kang;Atmos. Res.,2018 5. He, T., Tang, Y., Cao, R., Xia, N., and Li, B. (2023). Distinct urban-rural gradients of air NO2 and SO2 concentrations in response to emission reductions during 2015–2022 in Beijing, China. Environ. Pollut., 333.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|