Deep Learning-Based Detection of Urban Forest Cover Change along with Overall Urban Changes Using Very-High-Resolution Satellite Images

Author:

Javed Aisha1ORCID,Kim Taeheon1ORCID,Lee Changhui1ORCID,Oh Jaehong2ORCID,Han Youkyung1ORCID

Affiliation:

1. Department of Civil Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea

2. Department of Civil Engineering, Korea Maritime and Ocean University, Busan 49112, Republic of Korea

Abstract

Urban forests globally face severe degradation due to human activities and natural disasters, making deforestation an urgent environmental challenge. Remote sensing technology and very-high-resolution (VHR) bitemporal satellite imagery enable change detection (CD) for monitoring forest changes. However, deep learning techniques for forest CD concatenate bitemporal images into a single input, limiting the extraction of informative deep features from individual raw images. Furthermore, they are developed for middle to low-resolution images focused on specific forests such as the Amazon or a single element in the urban environment. Therefore, in this study, we propose deep learning-based urban forest CD along with overall changes in the urban environment by using VHR bitemporal images. Two networks are used independently: DeepLabv3+ for generating binary forest cover masks, and a deeply supervised image fusion network (DSIFN) for the generation of a binary change mask. The results are concatenated for semantic CD focusing on forest cover changes. To carry out the experiments, full scene tests were performed using the VHR bitemporal imagery of three urban cities acquired via three different satellites. The findings reveal significant changes in forest covers alongside urban environmental changes. Based on the accuracy assessment, the networks used in the proposed study achieved the highest F1-score, kappa, IoU, and accuracy values compared with those using other techniques. This study contributes to monitoring the impacts of climate change, rapid urbanization, and natural disasters on urban environments especially urban forests, as well as relations between changes in urban environment and urban forests.

Funder

Korea Agency for Infrastructure Technology Advancement

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3