Glacier Change in the West Kunlun Main Peak Area from 2000 to 2020

Author:

Zhang Cong1ORCID,Yao Xiaojun1ORCID,Li Suju2,Liu Longfei2,Sha Te1,Zhang Yuan1

Affiliation:

1. College of Geography and Environment Sciences, Northwest Normal University, Lanzhou 730070, China

2. National Disaster Reduction Center, Ministry of Emergency Management, Beijing 100124, China

Abstract

Glaciers are sensitive indicators of climate change, and investigation of their dynamics is crucial for ensuring regional ecological security as well as disaster prevention and mitigation measures. Based on Landsat Thematic Mapper (TM)/Enhanced Thematic Mapper Plus (ETM+)/Operational Land Imager (OLI) imagery, the outlines and length of glaciers in the West Kunlun Main Peak Area (WKMPA) during 2000–2020 were obtained by combining a band ratio method with manual interpretation and an automatic extraction method for the glacier centerline, respectively. There were 440 glaciers in the WKMPA in 2020, covering an area of 2964.59 ± 54.87 km2, with an average length of 2916 ± 60 m. The glacier count increased due to division, while the area and length all exhibited a declining trend from 2000 to 2020, at rates of −0.04%·a−1 (24.83 km2) and −0.11%·a−1 (66 m), respectively. Glacier retreat was primarily observed during the early period (2000–2005). Except for glaciers located above an elevation of 6250 m, the glacier area decreased with each altitude interval from 2000 to 2020, and the rate of relative change in glacier area generally decreased with increasing altitude. Moreover, except for a slight increase in north-facing glaciers, the area of glaciers facing other orientations decreased during 2000–2020. The accuracy of the empirical formula fit for glacier length was highly dependent on glacier class, with greater precision observed for smaller glaciers and lower precision for larger valley-basin glaciers due to their complex morphological structures being neglected and only a single quantitative relationship being considered. There was a time lag of 12 years between temperature changes and glacier area response in this region. The mechanism by which glacier division affects glacier change is complex, requiring dissection of multiple factors such as area, length, and terminal elevation before and after division.

Funder

Third Xinjiang Scientific Expedition Program

National Key Research and Development Program of China

Wetland Protection and Restoration Program

National Natural Science Foundation of China

Northwest Normal University Postgraduate Research Program

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference66 articles.

1. IPCC (2023). Synthesis Report of the IPCC Sixth Assessment Report (AR6): Longer Report, Cambridge University Press.

2. Qin, D.H. (2017). Introduction to Cryospheric Science, Science Press.

3. The impacts of climate change on water resources and agriculture in China;Piao;Nature,2010

4. Climate change impacts on glaciers and runoff in Tien Shan (Central Asia);Sorg;Nat. Clim. Change,2012

5. Spatio-temporal characteristics of glacier and lake variations in Qinghai province from 2000 to 2020;Zhang;J. Nat. Res.,2023

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3