Modeling of Wood Surface Ignition by Wildland Firebrands

Author:

Matvienko OlegORCID,Kasymov DenisORCID,Loboda Egor,Lutsenko Anastasia,Daneyko OlgaORCID

Abstract

The probability of structural ignition is dependent both on physical properties of materials and the fire exposure conditions. In this study, the effect of firebrand characteristics (i.e., firebrand size, number of firebrands) on wood ignition behavior was considered. Mathematical modeling and laboratory experiment were conducted to better understand the conditions of wood ignition by a single or group of firebrands with different geometry. This model considers the heat exchange between the firebrands, wood layer and the gas phase, moisture evaporation in the firebrands and the diffusion gases of water vapor in the pyrolysis zone. In order to test and verify the model, a series of experiments to determine probability and conditions for ignition of wood-based materials (plywood, oriented strand board, chipboard) caused by wildland firebrands (pine twigs with a diameter of 6–8 mm and a length of 40 ± 2 mm) were conducted. The experiments investigated the firebrand impact on the wood layer under different parameters, such as firebrand size and quantity, wind speed, and type of wood. The results of experiments showed that the increase in wind speed leads to the increase in probability of wood ignition. Based on the received results, it can be concluded that the ignition curve of wood samples by firebrands is nonlinear and depends on the wind speed and firebrand size as well as their quantity. At the same time, there is no ignition of wood samples in the range of wind speed of 0–1 m/s. The ignition of wood is possible with a decrease in the distance between the firebrands with a decrease in the firebrand length. This result agrees more closely with the model.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Safety Research,Environmental Science (miscellaneous),Safety, Risk, Reliability and Quality,Building and Construction,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3