Abstract
Among emerging pollutants, endocrine disruptors such as estradiol are of most concern. Conventional water treatment technologies are not capable of removing this compound from water. This study aims to assess a method that combines physicochemical and biological strategies to eliminate estradiol even when there are other compounds present in the water matrix. Na-montmorillonite, Ca-montmorillonite and zeolite were used to remove estradiol in a medium with sulfamethoxazole, triclosan, and nicotine using a Plackett–Burman experimental design; each treatment was followed by biological filtration with Daphnia magna. Results showed between 40 to 92% estradiol adsorption in clays; no other compounds present in the mixture were adsorbed. The most significant factors for estradiol adsorption were the presence of nicotine and triclosan which favored the adsorption, the use of Ca-montmorillonite, Zeolite, and time did not favor the adsorption of estradiol. After the physicochemical treatment, Daphnia magna was able to remove between 0–93% of the remaining estradiol. The combination of adsorption and biological filtration in optimal conditions allowed the removal of 98% of the initial estradiol concentration.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献