On the Sums over Inverse Powers of Zeros of the Hurwitz Zeta Function and Some Related Properties of These Zeros

Author:

Sekatskii Sergey1ORCID

Affiliation:

1. Laboratory of Biological Electron Microscopy, IPHYS, Ecole Polytechnique Fédérale de Lausanne (EPFL), and Department of Fundamental Biology, Faculty of Biology and Medicine, University of Lausanne, CH1015 Lausanne, Switzerland

Abstract

Recently, we have applied the generalized Littlewood theorem concerning contour integrals of the logarithm of the analytical function to find the sums over inverse powers of zeros for the incomplete gamma and Riemann zeta functions, polygamma functions, and elliptical functions. Here, the same theorem is applied to study such sums for the zeros of the Hurwitz zeta function ζ(s,z), including the sum over the inverse first power of its appropriately defined non-trivial zeros. We also study some related properties of the Hurwitz zeta function zeros. In particular, we show that, for any natural N and small real ε, when z tends to n = 0, −1, −2… we can find at least N zeros of ζ(s,z) in the ε neighborhood of 0 for sufficiently small |z+n|, as well as one simple zero tending to 1, etc.

Publisher

MDPI AG

Reference39 articles.

1. Olver, W.J.F., Lozier, D.W., Boisvert, R.F., and Clark, C.W. (2010). Handbook of Mathematical Functions, Cambridge University Press.

2. NIST Digital Library of Mathematical Functions, DLMF (2023). Zeta and Related Functions, NIST Digital Library of Mathematical Functions. Chapter 25.

3. Erdélyi, A., Magnus, W., Oberhettinger, F., and Tricomi, F.G. (1953). Higher Transcendental Functions, McGraw-Hill Book Company Inc.

4. Abramowitz, M., and Stegun, I.A. (1964). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards Applied Mathematics Series U.S. Government Printing Office.

5. Whittaker, E.T., and Watson, G.N. (1927). A Course of Modern Analysis, Cambridge University Press. [4th ed.].

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3