Improved Generative Adversarial Network for Bearing Fault Diagnosis with a Small Number of Data and Unbalanced Data

Author:

Qin Zhaohui12,Huang Faguo12ORCID,Pan Jiafang12ORCID,Niu Junlin12,Qin Haihua12ORCID

Affiliation:

1. Key Laboratory of Advanced Manufacturing and Automation Technology (Guilin University of Technology), Education Department of Guangxi Zhuang Autonomous Region, Guilin 541006, China

2. Guangxi Engineering Research Center of Intelligent Rubber Equipment(Guilin University of Technology), Guilin 541006, China

Abstract

Fault data under real operating conditions are often difficult to collect, making the number of trained fault data small and out of proportion to normal data. Thus, fault diagnosis symmetry (balance) is compromised. This will result in less effective fault diagnosis methods for cases with a small number of data and data imbalances (S&I). We present an innovative solution to overcome this problem, which is composed of two components: data augmentation and fault diagnosis. In the data augmentation section, the S&I dataset is supplemented with a deep convolutional generative adversarial network based on a gradient penalty and Wasserstein distance (WDCGAN-GP), which solve the problems of the generative adversarial network (GAN) being prone to model collapse and the gradient vanishing during the training time. The addition of self-attention allows for a better identification and generation of sample features. Finally, the addition of spectral normalization can stabilize the training of the model. In the fault diagnosis section, fault diagnosis is performed through a convolutional neural network with coordinate attention (CNN-CA). Our experiments conducted on two bearing fault datasets for comparison demonstrate that the proposed method surpasses other comparative approaches in terms of the quality of data augmentation and the accuracy of fault diagnosis. It effectively addresses S&I fault diagnosis challenges.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3