Recent Developments in Iterative Algorithms for Digital Metrics

Author:

Shaheen Aasma1,Batool Afshan1ORCID,Ali Amjad23,Sulami Hamed Al4ORCID,Hussain Aftab4ORCID

Affiliation:

1. Department of Mathematics, Fatima Jinnah Women University, Islamabad 46000, Pakistan

2. Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB T6G 2G1, Canada

3. Department of Mathematics & Statistics, International Islamic University, Islamabad 44000, Pakistan

4. Department of Mathematics, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia

Abstract

This paper aims to provide a comprehensive analysis of the advancements made in understanding Iterative Fixed-Point Schemes, which builds upon the concept of digital contraction mappings. Additionally, we introduce the notion of an Iterative Fixed-Point Schemes in digital metric spaces. In this study, we extend the idea of Iteration process Mann, Ishikawa, Agarwal, and Thakur based on the ϝ-Stable Iterative Scheme in digital metric space. We also design some fractal images, which frame the compression of Fixed-Point Iterative Schemes and contractive mappings. Furthermore, we present a concrete example that exemplifies the motivation behind our investigations. Moreover, we provide an application of the proposed Fractal image and Sierpinski triangle that compress the works by storing images as a collection of digital contractions, which addresses the issue of storing images with less storage memory in this paper.

Publisher

MDPI AG

Reference23 articles.

1. Digital topology;Rosenfeld;Am. Math. Mon.,1979

2. Remarks on Fixed Point Assertions in Digital Topology, 2;Boxer;Appl. Gen. Topol.,2019

3. Some Results on Simplicial Homology Groups of 2D Digital Images;Ege;Int. J. Inform. Comput. Sci.,2012

4. Lefschetz Fixed Point Theorem for Digital Images;Ege;Fixed Point Theory Appl.,2013

5. Applications of The Lefschetz Number to Digital Images;Ege;Bull. Belg. Math. Soc. Simon Stevin,2014

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3