Diamond-Type Dirac Dynamic System in Mathematical Physics

Author:

Gulsen Tuba1,Yar Ayşe Çiğdem2,Yilmaz Emrah1

Affiliation:

1. Department of Mathematics, Faculty of Science, Firat University, 23119 Elazig, Türkiye

2. Department of Mathematics, Institute of Science, Firat University, 23119 Elazig, Türkiye

Abstract

In order to merge continuous and discrete analyses, a number of dynamic derivative equations have been put out in the process of developing a time-scale calculus. The investigations that incorporated combined dynamic derivatives have led to the proposal of improved approximation expressions for computational application. One such expression is the diamond alpha (⋄α) derivative, which is defined as a linear combination of delta and nabla derivatives. Several dynamic equations and inequalities, as well as hybrid dynamic behavior—which does not occur in the real line or on discrete time scales—are analyzed using this combined concept. In this study, we consider a ⋄α Dirac system under boundary conditions on a uniform time scale. We examined some basic spectral properties of the problem we are considering, such as the simplicity, the reality of eigenvalues, orthogonality of eigenfunctions, and self adjointness of the operator. Finally, we construct an expression for the eigenfunction of the ⋄α Dirac boundary value problem (BVP) on a uniform time scale.

Publisher

MDPI AG

Reference44 articles.

1. Hilger, S. (1988). Ein Masskettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten. [Ph.D. Thesis, Universität Würzburg].

2. Analysis on measure chains—A unified approach to continuous and discrete calculus;Hilger;Results Math.,1990

3. Linear dynamic processes with inhomogeneous time scale;Aulbach;Nonlinear Dynamics and Quantum Dynamical Systems,1990

4. A unified approach to continuous and discrete dynamics, Qualitive theory of differential equaitons (Szeged 1988);Aulbach;Colloquia Mathematica Societatis Jànos Bolyai,1988

5. Bohner, M., and Peterson, A. (2001). Dynamic Equations on Time Scales: An Introduction with Applications, Birkhäuser Boston.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3