Under Sulfate Dry–Wet Cycling: Exploring the Symmetry of the Mechanical Performance Trend and Grey Prediction of Lightweight Aggregate Concrete with Silica Powder Content

Author:

Wang Hailong1,Chen Yaolu1,Wang Hongshan1

Affiliation:

1. College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China

Abstract

In order to improve the mechanical properties and durability of lightweight aggregate concrete in extreme environments, this study utilized Inner Mongolia pumice as the coarse aggregate to formulate pumice lightweight aggregate concrete (P-LWAC) with a silica powder content of 0%, 2%, 4%, 6%, 8%, and 10%. Under sulfate dry–wet cycling conditions, this study mainly conducted a mass loss rate test, compressive strength test, NMR test, and SEM test to investigate the improvement effect of silica powder content on the corrosion resistance performance of P-LWAC. In addition, using grey prediction theory, the relationship between pore characteristic parameters and compressive strength was elucidated, and a grey prediction model GM (1,3) was established to predict the compressive strength of P-LWAC after cycling. Research indicates that under sulfate corrosion conditions, as the cycle times and silica powder content increased, the corrosion resistance of P-LWAC showed a trend of first increasing and then decreasing. At 60 cycles, P-LWAC with a content of 6% exhibited the lowest mass loss rate and the highest relative dynamic elastic modulus, compressive strength, and corrosion resistance coefficient. From the perspective of data distribution, various durability indicators showed a clear mirror symmetry towards both sides with a silica powder content of 6% as the symmetrical center. The addition of silica fume reduced the porosity and permeability of P-LWAC, enhanced the saturation degree of bound fluid, and facilitated internal structural development from harmful pores towards less harmful and harmless pores, a feature most prominent at the 6% silica fume mixing ratio. In addition, a bound fluid saturation and pore size of 0.02~0.05 μm/% exerted the most significant influence on the compressive strength of P-LWAC subjected to 90 dry–wet cycles. Based on these two factors, grey prediction model GM (1,3) was established. This model can accurately evaluate the durability of P-LWAC, improving the efficiency of curing decision-making and construction of concrete materials.

Funder

National Natural Science Foundation of China

Major Science and Technology Special Project of Inner Mongolia Autonomous Region

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3