Research on Voltage Sag Loss Assessment Based on a Two-Stage Taguchi Quality Perspective Method

Author:

Guo Cheng1,Zhang Xinyuan1,He Mi2,Wang Linling1,Yang Xuanming1

Affiliation:

1. School of Electric Power Engineering, Kunming University of Science and Technology, Kunming 650500, China

2. Kunming Power Supply Bureau of Yunnan Power Grid Co., Ltd., Kunming 650000, China

Abstract

Voltage sags resulting from symmetrical or asymmetrical faults pose a significant threat to power quality. In response to this challenge, a voltage sag loss assessment method based on a two-stage Taguchi quality perspective approach is proposed to address the quantitative analysis of voltage sag economic losses. Initially, using the Taguchi quality perspective method, single-index quality loss functions are separately established for voltage sag magnitude and fault duration. Subsequently, by introducing a comprehensive load tolerance curve, sensitivity parameters within the quality loss function are accurately calculated. This yields a deterministic model for voltage sag assessment. Building upon this, the relative impact of the two indices on voltage sag loss is evaluated using the quality loss function. Consequently, a comprehensive loss model under the influence of multiple indices is formed by integrating two single-index evaluation models. The simulation results indicate that this method can effectively assess the economic losses of voltage sags under the combined influence of multiple factors. Compared to the original economic loss assessment method, it improves quantitative accuracy by approximately 3.72%. Moreover, the method reduces the computational complexity of loss assessment through the consolidation of intervals with similar sensitivity parameters.

Funder

Yunnan Provincial Department of Science and Technology Joint Special Fund

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3