Nonequilibrium Casimir–Polder Force between Nanoparticles and Graphene-Coated Silica Plate: Combined Effect of the Chemical Potential and Mass Gap

Author:

Klimchitskaya Galina L.12ORCID,Korikov Constantine C.3ORCID,Mostepanenko Vladimir M.124ORCID

Affiliation:

1. Central Astronomical Observatory at Pulkovo of the Russian Academy of Sciences, 196140 Saint Petersburg, Russia

2. Peter the Great Saint Petersburg Polytechnic University, 195251 Saint Petersburg, Russia

3. Huawei Noah’s Ark Lab, Krylatskaya Str. 17, 121614 Moscow, Russia

4. Kazan Federal University, 420008 Kazan, Russia

Abstract

The Casimir–Polder force between spherical nanoparticles and a graphene-coated silica plate is investigated in situations out of thermal equilibrium, i.e., with broken time-reversal symmetry. The response of the graphene coating to the electromagnetic field is described on the basis of first principles of quantum electrodynamics at nonzero temperature using the formalism of the polarization tensor in the framework of the Dirac model. The nonequilibrium Casimir–Polder force is calculated as a function of the mass-gap parameter, the chemical potential of graphene, and the temperature of the graphene-coated plate, which can be both higher or lower than that of the environment. It is shown that the force value increases with the increasing chemical potential, and this increase is more pronounced when the temperature of a graphene-coated plate is lower than that of the environment. The nonequilibrium force also increases with increasing temperature of the graphene-coated plate. This increase is larger when the plate is hotter than the environment. The effect is revealed that the combined impact of the chemical potential, μ, and mass gap, Δ, of the graphene coating depends on the relationship between Δ and 2μ. If 2μ>Δ, the magnitude of the nonequilibrium force between nanoparticles and a cooled graphene-coated plate becomes much larger than for a graphene coating with μ=0. The physical reasons explaining this effect are elucidated. Possible applications of the obtained results are discussed.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3