Unsymmetrical and C3-Symmetrical Partially Fluorinated Hexaarylbenzenes: Effect of Terminal Alkoxy Chain Length on Photophysical and Thermophysical Behavior

Author:

Wang Yizhou1,Yamada Shigeyuki1ORCID,Yasui Motohiro1ORCID,Konno Tsutomu1

Affiliation:

1. Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan

Abstract

Solution-state photoluminescence (PL) is affected by the electronic state; however, solid-state PL varies widely depending on the aggregated state. Although the synthesis and photophysical properties of unsymmetrical and C3-symmetrical hexaarylbenzenes (HABs) have been reported, the influence of their terminal alkoxy chains on their physical properties remains unclear. Therefore, we synthesized a series of unsymmetrical and C3-symmetrical partially fluorinated HABs with different alkoxy chains and investigated the effects of alkoxy chain length on the thermophysical and photophysical properties. While investigating phase transition behavior, the ethoxy-substituted unsymmetrical derivative revealed a columnar liquid-crystalline phase, whereas the other derivatives only exhibited a phase transition between crystalline and isotropic phases. While evaluating PL behavior, both the unsymmetrical and C3-symmetrical analogs exhibited relatively strong blue PL, independent of the alkoxy chain length. Through-space π-conjugation caused the PL spectra of C3-symmetrical derivatives to redshift compared to those of unsymmetrical derivatives. Partially fluorinated HABs exhibited relatively strong fluorescence, even in the crystalline state, depending on the alkoxy chain length, owing to the formation of various aggregated structures. Crystalline fluorinated HABs exhibited photochromism, resulting in the appearance of long-wavelength PL bands when exposed to ultraviolet (UV) irradiation, making them promising candidates for PL sensing materials for UV detection.

Funder

JSPS KAKENHI Grant-in-Aid for Scientific Research

Iketani Science and Technology Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3