On the Breaking of the U(1) Peccei–Quinn Symmetry and Its Implications for Neutrino and Dark Matter Physics

Author:

Civitarese Osvaldo1ORCID

Affiliation:

1. Department of Physics, University of La Plata, IFLP CONICET-UNLP, La Plata 1900, Argentina

Abstract

The Standard Model of electroweak interactions is based on the fundamental SU(2)weak × U(1)elect representation. It assumes massless neutrinos and purely left-handed massive W± and Z0 bosons to which one should add the massless photon. The existence, verified experimentally, of neutrino oscillations poses a challenge to this scheme, since the oscillations take place between at least three massive neutrinos belonging to a mass hierarchy still to be determined. One should also take into account the possible existence of sterile neutrino species. In a somehow different context, the fundamental nature of the strong interaction component of the forces in nature is described by the, until now, extremely successful representation based on the SU(3)strong group which, together with the confining rule, give a description of massive hadrons in terms of quarks and gluons. To this is added the minimal U(1) Higgs group to give mass to the otherwise massless generators. This representation may also be challenged by the existence of both dark matter and dark energy, of still unknown composition. In this note, we shall discuss a possible connection between these questions, namely the need to extend the SU(3)strong × SU(2)weak × U(1)elect to account for massive neutrinos and dark matter. The main point of it is related to the role of axions, as postulated by Roberto Peccei and Helen Quinn. The existence of neutral pseudo-scalar bosons, that is, the axions, has been proposed long ago by Peccei and Quinn to explain the suppression of the electric dipole moment of the neutron. The associated U(1)PQ symmetry breaks at very high energy, and it guarantees that the interaction of other particles with axions is very weak. We shall review the axion properties in connection with the apparently different contexts of neutrino and dark matter physics.

Funder

National Research Council (CONICET) of Argentina

Agencia Nacional de Promoción Científica y Técnica de Argentina

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3