Dynamical Behavior of Small-Scale Buoyant Diffusion Flames in Externally Swirling Flows

Author:

Yang Tao1ORCID,Ma Yuan1ORCID,Zhang Peng2

Affiliation:

1. Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

2. Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong

Abstract

This study computationally investigates small-scale flickering buoyant diffusion flames in externally swirling flows and focuses on identifying and characterizing various distinct dynamical behaviors of the flames. To explore the impact of finite rate chemistry on flame flicker, especially in sufficiently strong swirling flows, a one-step reaction mechanism is utilized for investigation. By adjusting the external swirling flow conditions (the intensity R and the inlet angle α), six flame modes in distinct dynamical behaviors were computationally identified in both physical and phase spaces. These modes, including the flickering flame, oscillating flame, steady flame, lifted flame, spiral flame, and flame with a vortex bubble, were analyzed from the perspective of vortex dynamics. The numerical investigation provides relatively comprehensive information on these flames. Under the weakly swirling condition, the flames retain flickering (the periodic pinch-off of the flame) and are axisymmetric, while the frequency nonlinearly increases with the swirling intensity. A relatively high swirling intensity can cause the disappearance of the flame pinch-off, as the toroidal vortex sheds around either the tip or the downstream of the flame. The flicker vanishes, but the flame retains axisymmetric in a small amplitude oscillation or a steady stay. A sufficiently high swirling intensity causes a small Damköhler number, leading to the lift-off of the flame (the local extinction occurs at the flame base). Under the same swirling intensity but large swirling angles, the asymmetric modes of the spiral and vortex bubble flames were likely to occur. With R and α increasing, these flames exhibit axisymmetric and asymmetric patterns, and their dynamical behaviors become more complex. To feature the vortical flows in flames, the phase portraits are established based on the velocity information of six positions along the axis of the flame, and the dynamical behaviors of various flames are presented and compared in the phase space. Observing the phase portraits and their differences in distinct modes could help identify the dynamical behaviors of flames and understand complex phenomena.

Funder

National Natural Science Foundation of China

APRC-CityU New Research Initiatives/Infrastructure Support from Central of City University of Hong Kong

Publisher

MDPI AG

Reference76 articles.

1. The fire whirl;Emmons;Proc. Combust. Inst.,1967

2. Turbulent diffusion flames;Bilger;Annu. Rev. Fluid Mech.,1989

3. Fire whirls;Tohidi;Annu. Rev. Fluid Mech.,2018

4. Entropy and flame transfer function analysis of a hydrogen-fueled diffusion flame in a longitudinal combustor;Sun;Energy,2020

5. Combustion dynamics of large-scale wildfires;Liu;Proc. Combust. Inst.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3