Natural Flavonoids Quercetin and Kaempferol Targeting G2/M Cell Cycle-Related Genes and Synergize with Smac Mimetic LCL-161 to Induce Necroptosis in Cholangiocarcinoma Cells

Author:

Lomphithak Thanpisit1ORCID,Jaikla Patthorn1,Sae-Fung Apiwit1,Sonkaew Sasiprapa1,Jitkaew Siriporn23ORCID

Affiliation:

1. Graduate Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand

2. Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand

3. Center of Excellence for Cancer and Inflammation, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand

Abstract

Cholangiocarcinoma (CCA) is an aggressive cancer associated with a very poor prognosis and low survival rates, primarily due to late-stage diagnosis and low response rates to conventional chemotherapy. Therefore, there is an urgent need to identify effective therapeutic strategies that can improve patient outcomes. Flavonoids, such as quercetin and kaempferol, are naturally occurring compounds that have attracted significant attention for their potential in cancer therapy by targeting multiple genes. In this study, we employed network pharmacology and bioinformatic analysis to identify potential targets of quercetin and kaempferol. The results revealed that the target genes of these flavonoids were enriched in G2/M-related genes, and higher expression of G2/M signature genes was significantly associated with shorter survival in CCA patients. Furthermore, in vitro experiments using CCA cells demonstrated that quercetin or kaempferol induced cell-cycle arrest in the G2/M phase. Additionally, when combined with a Smac mimetic LCL-161, an IAP antagonist, quercetin or kaempferol synergistically induced RIPK1/RIPK3/MLKL-mediated necroptosis in CCA cells while sparing non-tumor cholangiocyte cells. These findings shed light on an innovative therapeutic combination of flavonoids, particularly quercetin and kaempferol, with Smac mimetics, suggesting great promise as a necroptosis-based approach for treating CCA and potentially other types of cancer.

Funder

Thailand Science research and Innovation Fund Chulalongkorn University

Korea Foundation for Advanced Studies

Publisher

MDPI AG

Subject

Food Science,Nutrition and Dietetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3