Brightness Perception in World-Centered Coordinates Assessed by Pupillometry

Author:

Istiqomah NoveraORCID,Kinzuka Yuya,Minami Tetsuto,Nakauchi Shigeki

Abstract

Subjective brightness perception reportedly differs among the peripheral visual fields owing to lower- and higher-order cognition. However, there is still a lack of information associated with subjective brightness perception in the world-centered coordinates, not in the visual fields. In this study, we aimed to investigate the anisotropy of subjective brightness perception in the world-centered coordinates based on pupillary responses to the stimuli in five locations by manipulating the world-centered coordinates through active (requiring head movement) and passive scenes (without head movement) in a virtual reality environment. Specifically, this study aimed to elucidate if there is an ecological advantage in the five different locations in the world-centered coordinates. The pupillary responses to glare and halo stimuli indicated that the brightness perception differed among the five locations in the world-centered coordinates. Furthermore, we found that the pupillary response to stimuli at the top location might be influenced by ecological factors (such as from the bright sky and the sun’s existence). Thus, we have contributed to the understanding of the extraretinal information influence on subjective brightness perception in the world-centered coordinates, demonstrating that the pupillary response is independent of head movement.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Behavioral Neuroscience,General Psychology,Genetics,Development,Ecology, Evolution, Behavior and Systematics

Reference38 articles.

1. Coordinate transformations in the representation of spatial information;Andersen;Curr. Opin. Neurobiol.,1993

2. Spatial dynamics of the eggs illusion: Visual field anisotropy and peripheral vision;Qian;Vision Res.,2020

3. Visual field anisotropy revealed by perceptual filling-in;Sakaguchi;Vision Res.,2003

4. Distortions in length perception: Visual field anisotropy and geometrical illusions;Bertulis;Neurosci. Behav. Physiol.,2005

5. Visual field anisotropy for perceiving shape from shading and shape from edges;Wada;Interdiscip. Inf. Sci.,1998

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3