Abstract
Subjective brightness perception reportedly differs among the peripheral visual fields owing to lower- and higher-order cognition. However, there is still a lack of information associated with subjective brightness perception in the world-centered coordinates, not in the visual fields. In this study, we aimed to investigate the anisotropy of subjective brightness perception in the world-centered coordinates based on pupillary responses to the stimuli in five locations by manipulating the world-centered coordinates through active (requiring head movement) and passive scenes (without head movement) in a virtual reality environment. Specifically, this study aimed to elucidate if there is an ecological advantage in the five different locations in the world-centered coordinates. The pupillary responses to glare and halo stimuli indicated that the brightness perception differed among the five locations in the world-centered coordinates. Furthermore, we found that the pupillary response to stimuli at the top location might be influenced by ecological factors (such as from the bright sky and the sun’s existence). Thus, we have contributed to the understanding of the extraretinal information influence on subjective brightness perception in the world-centered coordinates, demonstrating that the pupillary response is independent of head movement.
Funder
Japan Society for the Promotion of Science
Subject
Behavioral Neuroscience,General Psychology,Genetics,Development,Ecology, Evolution, Behavior and Systematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献