Stock Portfolio Management by Using Fuzzy Ensemble Deep Reinforcement Learning Algorithm

Author:

Hao Zheng1ORCID,Zhang Haowei2,Zhang Yipu2ORCID

Affiliation:

1. Mathematics Department, State University of New York at Oswego, Oswego, NY 13126, USA

2. School of Energy and Electrical Engineering, Chang’an University, Xi’an 710064, China

Abstract

The research objective of this article is to train a computer (agent) with market information data so it can learn trading strategies and beat the market index in stock trading without having to make any prediction on market moves. The approach assumes no trading knowledge, so the agent will only learn from conducting trading with historical data. In this work, we address this task by considering Reinforcement Learning (RL) algorithms for stock portfolio management. We first generate a three-dimension fuzzy vector to describe the current trend for each stock. Then the fuzzy terms, along with other stock market features, such as prices, volumes, and technical indicators, were used as the input for five algorithms, including Advantage Actor-Critic, Trust Region Policy Optimization, Proximal Policy Optimization, Actor-Critic Using Kronecker Factored Trust Region, and Deep Deterministic Policy Gradient. An average ensemble method was applied to obtain trading actions. We set SP100 component stocks as the portfolio pool and used 11 years of daily data to train the model and simulate the trading. Our method demonstrated better performance than the two benchmark methods and each individual algorithm without fuzzy extension. In practice, real market traders could use the trained model to make inferences and conduct trading, then retrain the model once in a while since training such models is time0consuming but making inferences is nearly simultaneous.

Publisher

MDPI AG

Subject

Finance,Economics and Econometrics,Accounting,Business, Management and Accounting (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3