Extraction of Water Body Information from Remote Sensing Imagery While Considering Greenness and Wetness Based on Tasseled Cap Transformation

Author:

Chen ChaoORCID,Chen Huixin,Liang Jintao,Huang Wenlang,Xu WenxueORCID,Li BinORCID,Wang Jianqiang

Abstract

Water, as an important part of ecosystems, is also an important topic in the field of remote sensing. Shadows and dense vegetation negatively affect most traditional methods used to extract water body information from remotely sensed images. As a result, extracting water body information with high precision from a wide range of remote sensing images which contain complex ground-based objects has proved difficult. In the present study, a method used for extracting water body information from remote sensing imagery considers the greenness and wetness of ground-based objects. Ground objects with varied water content and vegetation coverage have different characteristics in their greenness and wetness components obtained by the Tasseled Cap transformation (TCT). Multispectral information can be output as brightness, greenness, and wetness by Tasseled Cap transformation, which is widely used in satellite remote sensing images. Hence, a model used to extract water body information was constructed to weaken the influence of shadows and dense vegetation. Jiangsu and Anhui provinces are located along the Yangtze River, China, and were selected as the research area. The experiment used the wide-field-of-view (WFV) sensor onboard the Gaofen-1 satellite to acquire remotely sensed photos. The results showed that the contours and spatial extent of the water bodies extracted by the proposed method are highly consistent, and the influence of shadow and buildings is minimized; the method has a high Kappa coefficient (0.89), overall accuracy (92.72%), and user accuracy (88.04%). Thus, the method is useful in updating a geographical database of water bodies and in water resource management.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3