Application of LISA Gravitational Reference Sensor Hardware to Future Intersatellite Geodesy Missions

Author:

Weber William JosephORCID,Bortoluzzi Daniele,Bosetti Paolo,Consolini Gabriel,Dolesi Rita,Vitale StefanoORCID

Abstract

Like gravitational wave detection, inter-spacecraft geodesy is a measurement of gravitational tidal accelerations deforming a constellation of two or more orbiting reference test masses (TM). The LISA TM system requires TM in free fall with residual stray accelerations approaching the fm/s2/Hz1/2 level in the mHz band, as demonstrated in the LISA Pathfinder “Einstein’s geodesic explorer” mission. Current geodesy missions are limited by accelerometers with 100 pm/s2/Hz1/2 level, due to intrinsic design limitations, as well as the challenging low Earth orbit environment and operating conditions. A reduction in the TM acceleration noise could lead to an important improvement in the scientific return of future geodesy missions focusing on mass change, especially in a scenario with multiple pairs of geodesy satellites. We present here a preliminary assessment of how the LISA TM system, known as the “gravitational reference sensor” (GRS), could be adapted for use in future geodesy missions aiming at residual TM accelerations noise at the pm/s2/Hz1/2 level, addressing the major design issues and performance limitations. We find that such a performance is possible in a geodesy GRS that is simpler and smaller than that used for LISA, with a lighter, sub-kg TM and gaps reduced from 4 mm to less than 1 mm. Acceleration noise performance limitations will likely be closely tied to the required levels of applied actuation forces on the TM.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference39 articles.

1. Laser Interferometer Space Antenna: A proposal in Response to the ESA Call for L3 Mission Concepts,2017

2. Sub-Femto-gFree Fall for Space-Based Gravitational Wave Observatories: LISA Pathfinder Results

3. Beyond the Required LISA Free-Fall Performance: New LISA Pathfinder Results down to 20  μHz

4. Position sensor for flight testing of LISA drag-free control;Weber,2003

5. Gravitational sensor for LISA and its technology demonstration mission

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3