Forest Height Estimation Approach Combining P-Band and X-Band Interferometric SAR Data

Author:

Xu Kunpeng,Zhao Lei,Chen Erxue,Li Kun,Liu Dacheng,Li Tao,Li Zengyuan,Fan Yaxiong

Abstract

Forest height is an essential parameter used to derive important information about forest ecosystems, such as forest above-ground biomass. In this article, a forest height estimation approach combining P-band and X-band interferometric synthetic aperture radar (InSAR) was introduced. The forest height was estimated using the difference in the penetration of long- and short-wavelength radars to the forest. That is, the P-band and X-band InSAR data were used to extract the digital terrain model (DTM) and digital surface model (DSM), respectively. For the DTM, an improved time-frequency (TF) analysis method was used to reduce the effect of forest scatterers on the extraction of a pure understory terrain phase based on P-band InSAR. For the DSM, a novel compensation algorithm based on a multi-layer model (MLM) was proposed to remove the penetration bias of the X-band. Compared to the existing method based on the infinitely deep uniform volumes (IDUV) model, the MLM-based method is more in line with the characteristics of forest structure and the scattering mechanism for X-band InSAR. The airborne P-band repeat-pass InSAR and spaceborne X-band (TanDEM-X) single-pass InSAR data were used to verify the proposed method over the study area in the Saihanba Forest Farm in Hebei, China. The results demonstrated that the improved TF method can achieve high-precision DTM extraction based on P-band InSAR data, and the root mean square error (RMSE) was 0.94 m. The proposed MLM-based compensation method of the DSM achieved a smaller error (RMSE: 1.67 m) compared to the IDUV-based method (RMSE: 3.01 m). Under the same DTM extracted by P-band InSAR, the estimation accuracy of forest height based on the MLM method was 86.58% (RMSE: 1.81 m), which was 8.49% higher than that of the IDUV-based method (RMSE: 2.98 m).

Funder

Ministry of Science and Technology of the People's Republic of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3